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Abstract—The interpolation based algebraic decoding for
Reed-Solomon (RS) codes can correct errors beyond half of
the code’s minimum Hamming distance through constructing
a minimum polynomial Q(x, y) and finding its y-roots. The
progressive algebraic soft decoding (PASD) constructs Q(x, y)
with a progressively enlarged y-degree and terminates once
the message is decoded, adapting the decoding capability and
computation to the channel. This paper proposes the re-encoding
transformed PASD algorithm, in which Q(x, y) is progressively
constructed by the low-complexity module minimization (MM)
technique. Re-encoding transform (ReT) results in a common
divisor for polynomials of the image of the submodule basis.
It can be removed, leading to a simpler image expansion and
reduction. Consequently, Q(x, y) is constructed through the
isomorphic image of the progressively enlarged submodule basis.
Our complexity analysis characterizes the complexity reduction
brought by the transform and shows high rate codes benefit a
greater complexity reduction.

Index Terms—Module minimization, progressive algebraic soft
decoding, Reed-Solomon codes, re-encoding transform

I. INTRODUCTION

Reed-Solomon (RS) codes are widely applied in digital
communication and storage devices. The interpolation based
Guruswami-Sudan algebraic decoding algorithm [1] breaks the
classical error-correction limit that is half of the code’s min-
imum Hamming distance. Utilizing soft information, Koetter
and Vardy [2] further proposed the algebraic soft decoding
(ASD) algorithm. However, the algebraic decoding algorithms
remain complex due to the construction of the interpolated
polynomial Q(x, y). To facilitate the decoding, the progres-
sive ASD (PASD) algorithm [3] constructs Q(x, y) with
a progressively enlarged y-degree. The decoding terminates
once the message polynomial f(x) is a y-root of Q, i.e.,
Q(x, f(x)) = 0, thus adapting the decoding capability and
computation to the channel.
Q(x, y) can be constructed using the concept of Gröbner

basis of module [4]. A module basis contains a set of bivariate
polynomials that satisfy the prescribed interpolation condition
with a maximum y-degree. It can be further reduced into
the Gröbner basis whose minimum candidate is Q(x, y).
This interpolation technique is called module minimization
(MM). Earlier research [5] showed it requires less finite
field arithmetic operations than the conventional Koetter’s
interpolation [6]. The basis reduction can be further facilitated
by a number of advanced techniques [7]–[9]. The recently

introduced progressive MM interpolation constructs Q(x, y)
through the image of the progressively enlarged submodule
basis, namely the PASD-MM algorithm [10]. More than re-
ducing the complexity, it removes the memory requirement of
the original PASD algorithm [3].

Re-encoding can further reduce the interpolation complexity
by transforming the interpolation points [11]. As for the MM
interpolation, this will result in a common divisor (poly-
nomial in x) for module generators. As a result, the basis
reduction can be simplified by trimming down the x-degree
of the generators [5]. This paper proposes the progressive
MM interpolation based on the re-encoding transform (ReT),
yielding a further complexity reduction over the PASD-MM
algorithm [10]. The greatest common divisor (GCD) of the
image polynomials will be derived. Isomorphic image can be
created by removing the GCD. This attributes to a simpler
image expansion and reduction. Our analysis shows that the
ReT yields a complexity reduction factor of k

n (k-dimension,
n-length of an RS code), revealing the complexity advantage
of high rate codes. Since the transform requires computation,
we also study the tradeoff between this extra cost and the com-
plexity reduction it brings. Our study shows when k

n > 0.5,
an overall complexity reduction can be ensured.

II. PREREQUISITE KNOWLEDGE

Let Fq = {σ0, σ1, . . . , σq−1} denote a finite field of size q.
Fq[x] and Fq[x, y] are the univariate and bivariate polynomial
rings defined over Fq , respectively. Given an (n, k) RS code,
message polynomial f(x) ∈ Fq[x] can be written as

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1, (1)

where f0, f1, . . . , fk−1 are message symbols. Codeword c =
(c0, c1, . . . , cn−1) ∈ Fnq is generated by

c = (f(α0), f(α1), . . . , f(αn−1)), (2)

where α0, α1, . . . , αn−1 are the n distinct nonzero elements
of Fq . They are called code locators.

Assume codeword c is transmitted through a memoryless
channel and r = (r0, r1, . . . , rn−1) ∈ Rn is the received
symbol vector. A reliability matrix Πq×n can be obtained. Its
entry πij = Pr[cj = σi | rj ] is the symbol wise a posteriori
probability 1. It will be transformed into a multiplicity matrix

1It is assumed that Pr[cj = σi] =
1
q
, ∀(i, j).
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Mq×n, where entry mij is the interpolation multiplicity for
point (αj , σi). Interpolation constructs a minimum polynomial
Q(x, y) that interpolates all the points with their multiplicity.
Given Q(x, y) =

∑
a,bQabx

ayb ∈ Fq[x, y], its monomials
xayb can be organized under the (µ, ν)-revlex order 2. Let
xa
′
yb
′

denote the leading monomial of Q with Qa′b′ 6= 0,
the (µ, ν)-weighted degree of Q is degµ,ν Q = degµ,ν x

a′yb
′
.

Given two distinct polynomials Q1 and Q2 with leading
monomials xa

′
1yb
′
1 and xa

′
2yb
′
2 , respectively, Q1 < Q2 if

xa
′
1yb
′
1 < xa

′
2yb
′
2 . For an (n, k) RS code, interpolation

constructs a minimum polynomial Q w.r.t. the (1, k−1)-revlex
order. Let l = degy Q be the decoding parameter. Root-finding
decodes f(x) through Q(x, f(x)) = 0 [12].

III. THE PASD-MM

A. MM Interpolation

In the Π→M transform [2], let

mj =

q−1∑
i=0

mij (3)

and m = max{mj ,∀j}. This process terminates when m = l.
Definition I. Given M, module Ml is the space of all

polynomials in Fq[x, y] that interpolate points (αj , σi) with
a multiplicity of mij and with a maximum y-degree of l.

Let Lj denote a list that enumerates interpolation points
(αj , σi) from column j of M as

Lj = [(αj , σi), . . . , (αj , σi)︸ ︷︷ ︸
mij

,∀i and mij 6= 0], (4)

where |Lj | = mj . Its balanced list L′j is created by moving
one of the most frequent elements of Lj to the back of L′j ,
and repeating this process mj times until Lj becomes empty.

Remark 1. If more than one point have the same frequency
in Lj , the one that corresponds to a larger πij is prioritized
to be moved to L′j .
L′j can be denoted as

L′j = [(αj , y
(0)
j ), (αj , y

(1)
j ), . . . , (αj , y

(mj−1)
j )], (5)

where y(0)
j , y

(1)
j , . . . , y

(mj−1)
j ∈ Fq . Given L′j , let

mj(t) = max{multi.((αj , y
(ε)
j )) | ε = t, t+ 1, . . . ,mj − 1}.

(6)
Note that mj(0) = max{mij ,∀i} and mj(t) = 0 for t ≥ mj .

To construct a basis for Ml, let

Fε(x) =

n−1∑
j=0

y
(ε)
j

n−1∏
j′=0,j′ 6=j

x− αj′
αj − αj′

, (7)

where ε = 0, 1, . . . , l − 1. Hence, Fε(αj) = y
(ε)
j ,∀j. Ml can

be generated as an Fq[x]-module by the following polynomials

Pt(x, y) =
n−1∏
j=0

(x− αj)mj(t)
t−1∏
ε=0

(y − Fε(x)), (8)

2The (µ, ν)-weighted degree of xayb is degµ,ν x
ayb = µa + νb.

Given xa1yb1 and xa2yb2 , xa1yb1 < xa2yb2 , if degµ,ν x
a1yb1 <

degµ,ν x
a2yb2 , or degµ,ν x

a1yb1 = degµ,ν x
a2yb2 and b1 < b2.

where t = 0, 1, . . . , l. They are called module generators,
constructing a basis of Ml (denoted as Bl). Since Pt(x, y) =∑
τ≤t P

(τ)
t (x)yτ where P (τ)

t (x) ∈ Fq[x], Bl can be presented
as an (l + 1) × (l + 1) matrix over Fq[x], where its entry
of row-t column-τ (denoted as Bl|(τ)

t ) is P (τ)
t (x). Bl will be

reduced into the Gröbner basis B′l that is in weak Popov form
3 [13]. The minimum candidate of B′l is the desired Q(x, y).

B. Progressive MM Interpolation

The progressive MM interpolation constructs Q(x, y) with a
progressively enlarged y-degree. Let v denote the progressive
iteration index and 1 ≤ v ≤ l. Qv(x, y) with degy Qv = v is
constructed at iteration v.

Definition II. Given a module Ml, its submodule Mv is
the subspace spanned by P0(x, y), . . . , Pv(x, y).

Polynomials P0(x, y), . . . , Pv(x, y) construct a basis of Mv

(denoted as Bv). Since when t ≤ v, degy Pt(x, y) ≤ v, Bv

can be presented as a (v + 1)× (v + 1) matrix over Fq[x].
For a balanced list L′j , let us define

δj(t) = mj(t)−mj(t+ 1), (9)

where t = 0, 1, . . . , l. Since mj ≤ l, mj(l + 1) = mj(l) = 0.
Consequently, δj(l − 1) = mj(l − 1) and δj(l) = 0. Let

Gt(x) =

n−1∏
j=0

(x− αj)mj(t) (10)

and

Rt(x) =
n−1∏
j=0

(x− αj)δj(t). (11)

Based on (9), we have

Gt(x) = Gt+1(x)Rt(x). (12)

Since mj(l) = δj(l) = 0,∀j, Gl(x) = Rl(x) = 1.
Let Θτ

t = {θ ⊂ {0, 1, . . . , t − 1} | |θ| = τ}. Note that
Θ0
t = {∅}, |Θτ

t | =
(
t
τ

)
and |Θt

t| = 1. Therefore, generators
(8) can be rewritten as

Pt(x, y) = Gt(x)Wt(x, y), (13)

where

Wt(x, y) =
t−1∏
ε=0

(y − Fε(x)) =
t∑

τ=0

w
(τ)
t (x)yτ (14)

and
w

(τ)
t (x) =

∑
θ∈Θt−τt

∏
ε∈θ

(−Fε(x)). (15)

Note that w(t)
t (x) = 1 and W0(x, y) = 1.

Theorem 2 [10]. Basis Bv can be constructed through

Bv = Gv(x) · Ξv, (16)

where

Ξv =

[
Rv−1(x) · Ξv−1 0v×1

w
(0)
v (x) · · · w

(v−1)
v (x) w

(v)
v (x)

]
(17)

3In an (l+1)×(l+1) matrix over Fq [x], each row represents a polynomial
in Fq [x, y]. The weak Popov form implies the y-degree of the leading
monomial of each row is different.
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is the image of Bv and 0v×1 is an all zero vector.
When v = l, Gl(x) = 1 and Bl = Bl = Ξl. Therefore,

the desired basis Bl can be constructed through the image of
the progressively enlarged submodule basis. Theorem 2 shows
Gv(x) is the GCD of polynomials in Bv . One can perform the
basis reduction on Ξv instead of Bv . That says by reducing
Ξv into weak Popov form Ξ′v , the desired reduced submodule
basis B′v can be constructed by B′v = Gv(x) ·Ξ′v . Qv(x, y) is
the minimum candidate of B′v . Theorem 2 also shows that Ξv
can be recursively constructed from Ξv−1. Therefore, Qv(x, y)
can be determined from the progressively enlarged image Ξv .
We further define generators of Ξv as

Pv,t(x, y) = Rv−1(x)P ′v−1,t(x, y), if 0 ≤ t ≤ v − 1, (18)

Pv,v(x, y) = Wv(x, y), (19)

where P ′v−1,t(x, y) are the polynomials of Ξ′v−1 and
P ′0,0(x, y) = 1. Reducing Ξv into Ξ′v , we can determine
Qv(x, y). Once Qv(x, f(x)) = 0, the decoding terminates.

IV. THE RET BASED PASD-MM

A. ReT

Let π̃j = max{πij ,∀i}. Entries π̃0, π̃1, . . . , π̃n−1 can be
sorted to obtain an index sequence j0, j1, . . . , jn−1 such that
π̃j0 ≥ π̃j1 ≥ · · · ≥ π̃jn−1

. Let Υ = {j0, j1, . . . , jk−1} and
Ῡ = {jk, jk+1, . . . , jn−1}. The above sorting ensures points
(αj , y

(0)
j ),∀j ∈ Υ, correspond to the k largest multiplicities in

M. They are chosen to construct the re-encoding polynomial

H(x) =
∑
j∈Υ

y
(0)
j

∏
j′∈Υ,j′ 6=j

x− αj′
αj − αj′

, (20)

where H(αj) = y
(0)
j ,∀j ∈ Υ. In the n balanced lists L′j , all

points are transformed by (αj , u
(ε)
j ) = (αj , y

(ε)
j − H(αj)).

Consequently, all lists L′j are transformed into

L̃′j = [(αj , u
(ε)
j ) | ε = 0, 1, . . . ,mj − 1]. (21)

For j ∈ Υ, if y(ε)
j = y

(0)
j , then u

(ε)
j = 0. Further let Λε =

{j | u(ε)
j = 0, j ∈ Υ} and Λ̄ε = Υ\Λε. Note that Λ0 = Υ.

Lemma 3. Given L̃′j and ε ≥ 1, if j ∈ Λε, δj(ε − 1) = 1.
Otherwise, δj(ε− 1) = 0. Note that δj(ε) is defined as in (9).

Proof: This is ensured by Remark 1. Point (αj , 0) would
appear earlier in L̃′j if it has the same multiplicity as another
point. Therefore, when ε ≥ 1, if j ∈ Λε, multi.((αj , u

(ε−1)
j ))−

multi.((αj , u
(ε)
j )) = 1 and mj(ε−1)−mj(ε) = 1. Otherwise,

multi.((αj , u
(ε−1)
j )) = multi.((αj , u

(ε)
j )) and mj(ε − 1) =

mj(ε).

B. ReT Based Progressive MM Interpolation

Based on the above transform, Fε(x) of (7) is redefined as

Fε(x) =
n−1∑
j=0

u
(ε)
j

n−1∏
j′=0,j′ 6=j

x− αj′
αj − αj′

. (22)

Let us define
ψ(x) =

∏
j∈Υ

(x− αj). (23)

Based on (19),

Pv,v(x, yψ(x)) =
v−1∏
ε=0

(yψ(x)− Fε(x))

=

v−1∏
ε=0

∏
j∈Λε

(x− αj) · W̃v(x, y), (24)

where

W̃v(x, y) =
v−1∏
ε=0

(y
∏
j∈Λ̄ε

(x− αj)− Tε(x)) (25)

and

Tε(x) =
∑

j∈Ῡ∪Λ̄ε

u
(ε)
j∏n−1

j′=0,j′ 6=j(αj − αj′)

∏
j′∈Ῡ∪Λ̄ε,j′ 6=j

(x−αj′).

(26)
Note that W̃0(x, y) = 1. When ε = 0, Λ0 = Υ and

∏
j∈Λ0

(x−
αj) =

∏
j∈Υ(x− αj). Further based on Lemma 3,

v−1∏
ε=0

∏
j∈Λε

(x− αj) =
∏
j∈Υ

(x− αj) ·
v−1∏
ε=1

∏
j∈Υ

(x− αj)δj(ε−1)

=
∏
j∈Υ

(x− αj)1+
∑v−2
ε=0 δj(ε). (27)

Therefore,

Pv,v(x, yψ(x)) =
∏
j∈Υ

(x− αj)1+
∑v−2
ε=0 δj(ε) · W̃v(x, y). (28)

It is now sufficient to derive the GCD for polynomials
Pv,t(x, yψ(x)), where t = 0, 1, . . . , v.

Theorem 4. The GCD of polynomials Pv,t(x, yψ(x)) is

Uv(x) =
∏
j∈Υ

(x− αj)
∑v−1
ε=0 δj(ε). (29)

Proof: Based on (18) and (28), when v = 1,

P1,0(x, yψ(x)) = R0(x) =
∏
j∈Υ

(x−αj)δj(0)
∏
j∈Ῡ

(x−αj)δj(0),

P1,1(x, yψ(x)) =
∏
j∈Υ

(x− αj) · W̃1(x, y).

Since δj(0) = 1 or 0, U1(x) =
∏
j∈Υ(x − αj)

δj(0) is
the GCD of P1,0(x, yψ(x)) and P1,1(x, yψ(x)), as well as
P ′1,0(x, yψ(x)) and P ′1,1(x, yψ(x)). When v = 2,

P2,t(x, yψ(x)) = R1(x)P ′1,t(x, yψ(x)), if t = 0, 1,

P2,2(x, yψ(x)) =
∏
j∈Υ

(x− αj)1+δj(0) · W̃2(x, y).

Since R1(x) =
∏
j∈Υ(x − αj)

δj(1)
∏
j∈Ῡ(x − αj)

δj(1),
U2(x) =

∏
j∈Υ(x − αj)

δj(0)+δj(1) is the GCD of
P2,t(x, yψ(x)), as well as P ′2,t(x, yψ(x)), where t = 0, 1, 2.
The above deduction shows that (29) is the GCD of
Pv,0(x, yψ(x)), . . . ,Pv,v(x, yψ(x)).

Therefore, the following bijective mapping can be per-
formed for polynomials Pv,t(x, y),

ϕv : Ξv → Φv

Pv,t(x, y) 7→ Uv(x)−1Pv,t(x, yψ(x)), (30)
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where t = 0, 1, . . . , v and ϕv is an isomorphism between Ξv
and Φv , i.e., Φv = ϕv(Ξv). Hence, entires of Φv have lower
degree than those of Ξv , leading to a simpler image reduction.

C. The Proposed Algorithm

The proposed ReT based PASD-MM algorithm determines
Qv(x, y) through the progressively enlarged isomorphic image
Φv . At the beginning, Φ1 is generated by

P̃1,0(x, y) =
∏
j∈Ῡ

(x− αj)δj(0), (31)

P̃1,1(x, y) =
∏
j∈Υ

(x− αj)1−δj(0) · W̃1(x, y). (32)

With ReT, monomials are organized under the (1,−1)-revlex
order. Φ1 will then be reduced into weak Popov form Φ′1.
Choose the minimum candidate of Φ′1 as Q̃1(x, y). Q1(x, y)
will be further restored by Q1(x, y) = U1(x)Q̃1(x, y

ψ(x) ).
If Q1(x, f ′(x)) = 0 and the estimated codeword ĉ =
(ĉ0, ĉ1, . . . , ĉn−1), where ĉj = f ′(αj) + H(αj),∀j, satisfies
the maximum-likelihood (ML) criterion [14] 4, the decoding
terminates and the decoded message is f̂(x) = f ′(x) +H(x).
Otherwise, the decoding continues by expanding Φ′1 to Φ2 in
pursuit of Q2(x, y).

In general, at iteration v−1 (v ≥ 2), if the message cannot
be decoded from Φ′v−1, Φ′v−1 will be expanded to Φv by

P̃v,t(x, y) = R̃v−1(x)P̃ ′v−1,t(x, y) if 0 ≤ t ≤ v − 1, (33)

P̃v,v(x, y) =
∏
j∈Υ

(x− αj)1−δj(v−1) · W̃v(x, y), (34)

where
R̃v−1(x) =

∏
j∈Ῡ

(x− αj)δj(v−1) (35)

and P̃ ′v−1,t(x, y) are polynomials of Φ′v−1. Φv will be reduced
into weak Popov form Φ′v . Choose its minimum candidate as
Q̃v(x, y). Qv(x, y) will be further restored by

Qv(x, y) = Uv(x)Q̃v

(
x,

y

ψ(x)

)
. (36)

If Qv(x, f ′(x)) = 0 and f̂(x) = f ′(x) + H(x) can yield a
codeword that satisfies the ML criterion, the decoding termi-
nates and outputs f̂(x). Otherwise, the decoding continues by
updating v = v+1. If v > l, the designed maximum y-degree
of Q(x, y) is exceeded. The decoding terminates and fails.

V. COMPLEXITY INSIGHT

The proposed algorithm consists of re-encoding transform,
progressive MM interpolation and root-finding, where the
complexity of root-finding is marginal in comparison with
the other two. In particular, the progressive MM interpola-
tion consists of image expansion and its reduction. For the
original PASD-MM algorithm [10], at progressive iteration
v, its image expansion and reduction exhibit a complexity of
n2v3 + n2 + 1

2n
2v2 and (n− k + 1)nv3(v + 1), respectively,

4Cyclic redundant check can also be used for validation.

where the complexity is measured as the number of finite field
arithmetic operations. Since re-encoding transform incurs extra
computation, it is important to study the tradeoff between the
complexity of the transform and its complexity reduction effect
for the MM interpolation.

For re-encoding transform, construting H(x) and transform-
ing the coordinates require (n − k)(4n − 3k) and (n − k)k
operations, respectively. For progressive MM interpolation,
complexity of the image expansion at iteration v (computing
(33) and (34)) is

C(1)(v) = (n− k)2v3 + 2(n− k)2 +
1

2
(n− k)2v2 (37a)

≈ (n− k)2v3. (37b)

Reducing Ξv into weak Popov form requires at most (n−k+

1)v2 row operations [13]. Since deg Φv|(τ)
t ≤ (n − k + 1)v,

complexity of the image reduction is

C(2)(v) = (n− k + 1)2v3(v + 1) (38a)

≈ (n− k)2v4. (38b)

Restoring Q̃v into Qv (computing (36)) requires

C(3)(v) =
v2k2

2
+ k(n− k)v3 +

knv3

2
(39a)

≈ knv3 (39b)

operations. Therefore, if the decoding terminates at iteration
v, the MM interpolation complexity will be

∑v
v′=1(C(1)(v′)+

C(2)(v′) + C(3)(v′)).

TABLE I
MM INTERPOLATION COMPLEXITY COMPARISON

Image Exp. Image Red. Poly. Restoration
PASD-MM n2v3 (n− k)nv4 −

ReT PASD-MM (n− k)2v3 (n− k)2v4 knv3

Table I compares the MM interpolation complexity (at
progressive iteration v) between the PASD-MM and the ReT
PASD-MM algorithms. For the ReT PASD-MM algorithm,
(n − k)2v3 + knv3 ≈ n2v3. The complexity reduction in
image expansion compensates the extra computation of poly-
nomial restoration. For both algorithms, when v (degy Qv) is
sufficiently large, image reduction dominates the interpolation
complexity. As a result, re-encoding transform yields a com-
plexity reduction factor of k

n . That says high rate codes will
benefit a greater complexity reduction from the transform.

However, if the progressive decoding terminates at an early
stage, e.g., v = 1, the transform computation may not be
compensated by the MM complexity reduction. The above
analysis shows that code rate plays an important role at
this tradeoff. Let us take v = 1 for more insights. Now
complexity C(1)(1), C(2)(1) and C(3)(1) will be characterized
by (37a), (38a) and (39a), respectively. Further considering the
transform complexity, the total computational cost is 1

2 (n −
k)(19n − 13k) + 1

2 (k2 + kn). For the PASD-MM algorithm,
when v = 1, its MM complexity is 5

2n
2 + 2(n − k + 1)n

[10]. Enforing the ReT PASD-MM complexity smaller than
the PASD-MM, we have 14

(
k
n

)2−27
(
k
n

)
+10 < 0. It requires
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TABLE II
AVERAGE COMPLEXITY IN DECODING THE (63, 55) RS CODE (l = 4)

SNR (dB) 4.0 4.5 5.0 5.5 6.0 6.5 7.0
PASD 4.31× 106 2.74× 106 1.30× 106 4.96× 105 2.46× 105 1.87× 105 1.84× 105

PASD-MM 1.07× 106 7.04× 105 3.40× 105 1.28× 105 6.01× 104 4.28× 104 4.06× 104

ReT PASD-MM 8.09× 105 5.22× 105 2.47× 105 9.05× 104 3.86× 104 2.49× 104 2.28× 104

k
n > 0.5. That says when terminating at the first iteration,
re-encoding tranform will yield a lower complexity than the
non-ReT counterpart for codes with a rate greater than 0.5.
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Fig. 1. Progressive interpolation complexity for RS codes defined over F64.

Fig. 1 shows our simulation results of progressive in-
terpolation complexity in decoding RS codes defined over
F64. Note that each curve shows the interpolation complex-
ity when the progressive decoding terminates at iteration v
for either the PASD-MM algorithm or the ReT PASD-MM
algorithm. They show that re-encoding transform yields a
lower complexity as the code rate increases, resulting in a
more significant complexity reduction over the PASD-MM
algorithm. In particular, when v = 1, the ReT PASD-MM
algorithm becomes less complex when k

n > 0.5, validating the
above analysis. If the progressive decoding terminates at a later
stage, e.g., v = 4, image reduction dominates the complexity.
Re-encoding transform results in a lower complexity for codes
of all rate. Note that if the channel condition is sufficiently
good, most of the progressive decoding will terminate with
v = 1. Rate of 0.5 is also a watershed for the asymptotic
complexity performance of the two algorithms.

Table II further shows how the progressive decoding com-
plexity varies w.r.t. channel condition. They are obtained over
the additive white Gaussian noise (AWGN) channel using
BPSK. The PASD algorithm [3] applies Koetter’s interpo-
lation. As the signal-to-noise ratio (SNR) increases, more
decoding events terminate at an earlier stage, resulting in a
smaller complexity. By comparing the PASD and the PASD-
MM algorithms, the MM interpolation can reduce the com-
plexity by an order of magnitude. The re-encoding transform
further reduces the PASD-MM complexity. Echoing Fig. 1,
with this code rate, the ReT PASD-MM algorithm is always
simpler than the PASD-MM algorithm. It should be pointed

out that the proposed algorithm achieves the same performance
as the PASD-MM algorithm.

VI. CONCLUSION

This paper has introduced the re-encoding transformed
ASD for RS codes, where its interpolation is realized by the
progressive MM technique. Re-encoding transform results in
a common divisor for polynomials of the image of submodule
basis. Removing it leads to a simpler progressive interpolation.
Complexity analysis has revealed the proposed ReT PASD-
MM algorithm yields a complexity reduction factor of k

n
over its non-ReT counterpart. Its complexity advantage can
be ensured if the code rate is greater than 0.5.
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